- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0001000001000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Brandimarte, Laura (2)
-
Chen, Hsinchun (2)
-
Lin, Fangyu (2)
-
Brown, Sue (1)
-
Samtani, Sagar (1)
-
Zhu, Hongyi (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The increasing societal concern for consumer information privacy has led to the enforcement of privacy regulations worldwide. In an effort to adhere to privacy regulations such as the General Data Protection Regulation (GDPR), many companies’ privacy policies have become increasingly lengthy and complex. In this study, we adopted the computational design science paradigm to design a novel privacy policy evolution analytics framework to help identify how companies change and present their privacy policies based on privacy regulations. The framework includes a self-attentive annotation system (SAAS) that automatically annotates paragraph-length segments in privacy policies to help stakeholders identify data practices of interest for further investigation. We rigorously evaluated SAAS against state-of-the-art machine learning (ML) and deep learning (DL)-based methods on a well-established privacy policy dataset, OPP-115. SAAS outperformed conventional ML and DL models in terms of F1-score by statistically significant margins. We demonstrate the proposed framework’s practical utility with an in-depth case study of GDPR’s impact on Amazon’s privacy policies. The case study results indicate that Amazon’s post-GDPR privacy policy potentially violates a fundamental principle of GDPR by causing consumers to exert more effort to find information about first-party data collection. Given the increasing importance of consumer information privacy, the proposed framework has important implications for regulators and companies. We discuss several design principles followed by the SAAS that can help guide future design science-based e-commerce, health, and privacy research.more » « lessFree, publicly-accessible full text available December 1, 2025
-
Lin, Fangyu; Brandimarte, Laura; Brown, Sue; Chen, Hsinchun (, IEEE)Personally Identifiable Information (PII) leakage can lead to identity theft, financial loss, reputation damage, and anxiety. However, individuals remain largely unaware of their PII exposure on the Internet, and whether providing individuals with information about the extent of their PII exposure can trigger privacy protection actions requires further investigation. In this pilot study, grounded by Protection Motivation Theory (PMT), we examine whether receiving privacy alerts in the form of threat and countermeasure information will trigger senior citizens to engage in protective behaviors. We also examine whether providing personalized information moderates the relationship between information and individuals' perceptions. We contribute to the literature by shedding light on the determinants and barriers to adopting privacy protection behaviors.more » « less
An official website of the United States government
